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shell to a system of linear algebraic equations by the Ritz method. 
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The state of stress of an elastic rod of finite length not acted on by bending moments 
and fastened to a semi-infinite plate is considered. The problem has already been inves- 

tigated p- 31, but only for the simpler case where the load is applied to the rod ends. 
The present paper concerns the case where the force is applied to the center of the rod. 
The case where a heat source or a thermoelastic deformation center c4] is present at 
some poiut of the elastic half-plane is also considered. 

As in the aforementioned studies, the problem is stated in the form of a Prandtl integro- 
differential equation; methods for solving the latter are the subject of an extensive 
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literature p, 5, 61. The first step is to reduce the problem to a system of linear algebraic 
equations in some way. Some authors either give relatively complex general formulas 

for calculating the system coefficients in any approximation or no formulas at all. Other 
works contain quite simple formulas (as in the Multhopp method) but require recomputa- 

tion of all the coefficients in each successive approximation. 

The method of orthogonal polynomials [7] employed here quickly reduces the problem 
to an infinite system, This yields a very simple formula for the coefficients (in the case 

of a constant cross section), and affords a ready means of establishing the regularity and 
quasi-regularity of the system. 

The paper concludes with an extension of the proposed method to rods of variable 

cross section. Cases where the cross section varies according to a linear or elliptic law 

are considered. The infinite system has a simple exact solution in the latter case. 

1. Let a rod with the transverse cross-sectional area F (z) be welded (cemented) over 

a finite segment 1 z 1 s$ a of a semi-infinite plate (half-plane) of thickness h . The 

contact stresses z (z) which arise along the line of contact between the rod and half-plane 

can be determined from the Prandtl integro-differential equation [l-3] 

(1.1) 

where A!$, Es, are the elastic moduli of the rod and half-plane, respectively, and f (x) 
is a function which depends on the load. 

Denoting the resultant of all the forces applied to the rod by R , we can write the 

self-evident equation a 

h j z(t)& = $- 5 sign (x - t) Z (t) dt + +- (1 l 2) 

Let us set F (x) = F (G $ (z / a), whez 9 (Z / a) > 0 for [ z i < a. Substitut- 

ing (1.2) into (1.1) and converting to the dimensionless coordinates f* = 2 / a and 
t* = t / a (from now on the asterisks will be omitted and the old symbols retained), 

we obtain 1 

The solution of Eq. (1.3) must be subjected to the condition 
1 

s .(x)&=~ 
-1 

(1.4) 

Let us express the required function z (2) as a series in Chebyshev polynomials of the 
first kind, 

r(4 = &.. i KnTTn (XI (1.5) 
m-0 

then substitute (I,. 5) into (1.3). and apply the formulas 

1 

s T, (f) df 

f 
0 @=o) 

W) 
-_1 b- f) J-f-_ - m7,_~ (2) (m = 1,-z,. * *) 
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1 
1 

s 
T, P) & 

i 

arcsin 2 (m=O) (cont. ) 

I 
L 

-1 
sign(s--) m' = _ m-ll/~-_iu,_l(~) (m=l, 2,...) 

((I, (2) is a Chebyshev polynomial of the second kind) 

Multiplying by fl --* ‘&(a$/$() d x an integrating over the interval (-1, 1) 

with the aid of formula 7.343(2) of [8], we obtain the infinite system 

-& &+I + i &,B, -t,k = - B-Ilk & - b, (k=O,i,...) (1.7) 
m=l 

where 

l (1 
Bm-l,k= $ S - =’ 

_l rp(=) 
urn-l (5) uk (5) d3: (m, k=O,i.. . ..) (1 J) 

1 

b, = s 
_I_.@- j/i - x’l U, (5) dx 

_-1 * (4 
(k=O.i....) (1.9) 

The first formula of (1.6) appears in [8] (p. 847). The second formula follows from 

the more general relation given in [9]. By virtue of (1.6). -m-‘)/i - zsU,_i(z) for 
m = 0 in (1.8) must be replaced by arc sin t. 

let us consider in more detail the case where the rod cross section is constant, i. e. 
where F (z) = F (0) and 9 (x) = 1. It is convenient to express the function T (a$ 

as a sum of two terms, 7 (z) = %+ (x) -/- r- (x), where ‘F+ (z) and T- (z) are the 

even and odd parts of the function z (5) , respectively. Then 
03 

t+(5) = Jf&m=, 2 X2m T2m tx) (1.10) 

and the infinite system is of the form 

$- Xzk+a + 5 Xzmn2m-1, 2ktl = - B-1, zk+& - bzktl (k=l,O, . . *) (1.11) 

m=l 

&m-l, zk+i = - 
8(k+l) 

[ 4m2 - (2k + 1)2] [ 4ma - (2k + 3)s] 
(m.k=O.l. . ..) (1.12) 

1 

b2ki.x = s 6 (4 l/l - x2 Usk+l (z) dX (k=O, 1, . . .) (1.13) 
-1 

Substituting (1.10) into (1.4). we find that Xs = R / xho. 

In obtaining the coefficients l?2m_1, 2k+l we use the formulas 

1 

s 

kn 
arc sin t Jfl - 32 Uk (I) dz = sina- 

4 (k + 1) 

2 ka(k+ 2)a 
(k=0,1,2,...) (1.14) 

-1 

1 

s 
(1 - z)~ II, (z) 0, (z) dz = - 4 (k + 1) (m + 1) co93 (m + k) z 

lb + iJa - kal I(m+ lja- (k + 21a1 2 
-1 

(m,k=O,i,...) (1.15 

which are easy to verify by converting to the new variable y = arc cos z in the integrals 
and making use of formulas 10.11(2) of DO]. 

Similar results are obtainable in the case where ‘c (x) = ?- (5). They can be 
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obtained by replacing 2m - 1 by 2m and 21% + 1 by 2k in formulas (l.lO)-(1.13). 
In addition, we must set X, = 0 in system (1.11). 

Now let us investigate system (1.11). We begin by showing that 

B _+ 5, k- &m-l,tk+ll-+O as k+ 00 
m=l 

(1.16) 

i.e. that system (1.11) is quasiregular for all values of the parameter k (0 G h < 00) . 
First of all we note that the coefficients B aml,ak+l < 0 for all m and k except in 

the case m = k + 1. Isolating this term, we rewrite (1.16) as 

m=l 

(1.17) 

where the prime means that the sum does not include the term for m = k -/- 1. Adding 
the missing term to the sum in (1.17) and then expressing the coefficient Bsmt, sk+r 

as a sum of two terms. we obtain two series summable with the aid of formula 1.421(3) 

of [8], Carrying out the necessary operations, we find that Eq, (1.17) becomes 

P 2k 
KS-.- 

16 (k + 1) 4@+1) 
n L (4k + 3) (4k + 5) - (2k+i)S (2k + 3)a 1 (k=O. 1, . ..) (1.18) 

so that condition (1.16) is valid for all 0 ,( k < 00. 
System (1.11) is regular if Pk < 1 for all 1~ (Ic F 0, 1, . ..). We infer from(l.18) 

that the maximum value of fi k~~~ur~ for 1~ = 0. The inequality fik G 6, - 
‘- I.24 h / rt is then valid for all k (k = 0, I,...), which in tum implies that system 

(1.11) is regular for h < 2.5 . Thus, the regularity condition for infinite system (1.11) 
is broader than that of ‘~l],namely h < 1.5. Similar reasoning for 

yields the result h < 1.1. 
Let us consider the calculation of the coefficients bzk and blk,,L 

cases of rod loading. Let the rod be acted on by two concentrated 
nitude 0.5P, applied at the points x = -J-E and directed along the 

we have 

the case 7 (5) = z- 1~) 

for certain particular 

forces, each of mag- 
x-axis, In this case 

T (2) = 2+ (z), g (4 = 

where e (5) is a Heaviside unit function. If E = 1 (the forces are applied to the rod 

ends) then bza+l = 0 (k = 0, I, 2, ..,). If c = 0 (i.e. if a force of magnitude P is 
applied to the center of the rod) the coefficients b2k+l are given by 

b Zk+l= (-l)k%- (2k -f&i!+ 3) 
(bO,l,... ) 

To find the coefficients bsk+, ( X.13) we must convert to the new variable y= arc Cos 2 

as above. 
If the forces are directed in different directions, then t (2) = T- (I) and we obtain a 

formula similar to (1.19) for the COeffiCientS &k . 
If t;==1 

b. = --nPlltah, tFdk = 0 (h’=l,Z,...) 
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Computations show that the matrix of coefficients of system (1.11) and of the analog- 

ous system for 7 = t- has essentially diagonal dominance, which is a property very con- 
venient for computational purposes.On the other hand, it indicates that the decrease of the 
unknown (required) coefficients is approximately the same as that of the coefficients of 

the right side. In addition, the decrease of the required coefficients also depends mark- 
edly on the parameter L For example, h = i, 1.5, 5 in the case E = fi required 

three, five, and eight approximations, respectively, for the determination of u or T . The 

number of approximations was such that the u or t in the mth approximation differed 
from the o of T in the ( m + 1 )-th approximation by not more than 5%. 

For 5 # f i the coefficients bk are Fourier coefficients in Chebyshev polynomials of 
a discontinuous function and therefore decrease gradually. Moreover, according to Melan’s 

exact solution [11] for an infinite rod, the tangential stresses under the applied load 

increase without limit. Hence, the solution given by series (1.5) near the force can dif- 
fer from the exact solution by an arbitrary amount. These difficulties in the case % = 0 
are eliminated in the next section. 

2, Let the concentrated force P be applied to the rod center (Fig. la). This problem 

t 

can be solved by the superposition of 
Problems (b) and (c) (Fig. lb and c). 

Fromnowonweuse T(t),rr(t) 
and zs (2) (omitting the superscript 

I j-which indicates the evenness of 

the function), to denote the contact 
stresses which arise along the line of 

contact between the rod and plate in 

r, 
41 

- - -. Problems (a),(b), and (c) (Fig.la, 
b, and c),respectively. In Problem 
(c) the rod ends are acted on by the 

Fig. 1 

of an infinite rod (Fig. lb). 

stresses or = 1 a, (*a) 1 which 

arise in the cross sections z = f a 

Melan fll] gives the following solution of Problem (b) : 

where si (y) and ci (y) are the integral sine and cosine.respectively. The functions 
occurring in (2.1) have been tabulated, and construction of the curve of tl (z) is not 
difficult. Problem (c) can be solved by the method described in the preceding section. 
In this case the coefficients bsk+r are given by the formula 

Substituting (2.1) into the latter 
ing the relations O” J,(z) 

03 s 
= 

c 

o h+z 
e-nx-Aehx & 

0’ 

formula, reversing the order of integration, and apply- 

&= (- Yn+l [Sn (A) + SEn (A) + nNn (h)I = 

(n=O,i,..., h>O) (2.2) 
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1 

s cos uxT,,(x)dx = - (2.3) 
-1 n=l 

as well as formulas 3.722(8), 7.344(2) and 6.561(14) of 181, we obtain 

bsk+t = -$ {(- i)‘h-’ (k + 1) [(A + I)-’ -t- &&+a (A) + =%k+a (A) -I- 

+ aNak+a (A)] + co, ak+n [&I (A) + No @)I + $2 (- 1)” cm, zk+a [‘%I (A) -I- 
n=1 

+ nE2n @I + ITN2n @)I) (2.4) 
Here 8, (x) are Schllfli polynomials ( [8], p. 1003), En (z) is a Weber function 

( [8], p. 1002). Nn (5) is a Neumann function, J, (z)is a Bessel function of the first kind, 
and finally 

csn, ak = 
4 (n’+kl)-1 

I@ + 1)’ - 4M] [ (2n - i)’ - 4&S] (n,k=O,i,...) 

Relation (2.2) is readily obtainable by using the identity 

O” J (4 s L dz = 5 Jn (2) dz 5 ,-()+X%t, 
h + 2 

A>0 
0 0 0 

reversing the order of integration, and applying formulas 6.611(l), 3.374(2) of [8], and 

7.12(47) of DO]. To obtain relation (2.3) we must replace cos a.z by its series in Che- 

byshev polynomials of the first kind and integrating term by term. The series occurring 

in (2.3) and (2.4) converge quite rapidly. 

The contact stresses in Problem (a) are 7 (5) = -rt (5) $- 7, ix), where rr(;c) and 
rs(s) are given by formulas (1.10) and (2.1). It-is easy to show that the normal stresses 

in the rod are given by the formula 

Q (5) = 
O"X 

--I+ $jj-[Xo(arcsinx+ +)-fl -xa 2 MU,,_,]+ 
t?l==l 

+p *F (0) 
[ co9 hx si hx - sin hxci hx] 

The last term of this expression represents the normal stresses in the Melan problem 

ml. 
The greatest difficulties arise in calculating the coefficients bakcl. However, a prac- 

tically acceptable solution is obtainable in some cases without their computation. In 

other words, the solution of Problem (a) can be obtained by superimposing Problems (b) 

and (c) without allowance for the tangential stresses or (5) applied outside the segment 
(--a, a) in Problem (c). This fact is illustrated in Table 1 which gives values of u and 
t computed with allowance for the indicated coefficients (the first and third rows) and 

without allowance for them (the second and fourth rows) in the case h = 1.0. The tabu- 
lated values of t represent fractions of P/ah and those of o fractions of P/F (0). We see 
from the Table that the maximum disparity between the normal stresses computed with 

and without allowance for r1 (z) outside the segment (-a,a) is 12.7 % and occurs near 
the ends of the rod, where these stresses have their minimum values. The disparity of 
the tangential stresses does not exceed 7.8%. The indicated errors decrease as the para- 

meter h increases, reaching 4.8 % and 2.3 %, respectively, for h == 5 . In contrast to 
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Sect. 1, the number of approximations was such that the u or z obtained in the mth 
approximation began to differ from the u or v in the ( m -t i)-th approximation in the 

fourth place only. 
Table 1 

0 

0 

_- 
0 0.t 

0.500 
0.500 

LV 

0.29 
0 
0.126 
0 

0.403 0.342 0.303 
0.403 0.342 0.301 
0.672 0.490 0.398 
0.675 0.496 0.406 
0.148 0.145 0.139 
0.0241 0.0472 0.0685 
0.124 0.117 0.107 
0.0446 0.0836 0.113 

0.5 0.6 

0.233 0.203 
0.229 0.197 
0.307 0.292 
0.325 0.324 
0.122 0.110 
0.106 0.125 
0.0812 0.0671 
0.140 0.140 

0.2 

0.7 0.6 0.9 

0.174 0.143 0.103 
0.166 0.132 0.0914 
0.294 0.336 0.481 
0.319 0.357 0.476 
0.0963 0.0798 0.0578 
0.149 0.186 0.272 
0.0532 0.0396 0.0256 
0.137 0.136 0.150 

0.3 0.4 

0.265 
0.263 
0.342 
0.355 
0.131 
016879 
0.0943 
0.131 

1.0 

00 
00 

00 

0 
00 

0 
00 

3. Let us consider the following thermoelasticity problem. Suppose that a heat source 
of strength W, acts at the point z = 0, y = TJ in the half-plane ; the boundary 2 = 0 
is maintained at the temperature to = 0 and there is no heat transfer ln the planes 
bounding the plate. Writing out the conditions of the compatible deformation of the 

plane and rod for 1 5 1 < a and making use of expressions (25.28) of [4], we reduce 
the problem to Eq. (1.3) where, however, 

Here and below a; and 0 denote the coefficient of linear expansion and the thermal 
conductivity of the plate, respectively. 

In this case z (5) = ‘F- (5). so that the system contains odd unknowns only and the 
coefficient of the right side must be computed from the formula 

bzk = (- l)k lv;;;‘fq ( r/l + v - vk+l 

The results are similar in the case where a thermoelastic deformation center (~43, 
p.225) is situated at the point z = 0, y = TJ , 

g (4 = 
2Ed (0) at (,,z _ .q 

2ta”it w + o2 

brk = 2E1;2;’ ‘1 (_ l)k (‘& + 1) ( vT;;Jq)2k+1 
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The above formulas for bsR are obtainable from the expansions 

1 
- =+ 5 (-l)“(fl j-q~-Tp+lU2&), ‘12>0 q” + ZJ 

m=o 

ll*--t* -- 
(q’ + 22)” = v& < (-- I>” Pm + 1) (V 1 + rla - wmtl Uzm (z), r1*> 0 

m 0 

which follow from the relations 

i Jf/1-- 
ty + 29 

U,,(s)ds= -+os+l/i-T;Ta-rpl (3.1) 
-1 

1 

s (V-=?) ~~l-~~Um(2)~~=~(m+1)cos-‘Z- mn (1/l + n!- q)m+t 
_-I (TJ” + 2”)” - 

Vi+r12 
(3.2) 

(V > 0; m=O. 1,. . .) 

These formulas are easy to verify by replacing the functions 

(n2 + 22)-l and ()I2 - sz)/(q2 + zz)2 

in (3.1) and (3.2) by their integral representations as given by formulas 3.893(Z) and 
3.944(U) of [8], reversing the order of integration, converting to the variable 7 = 

=arc cos z , and applying formulas 3.715(18), 6.611(l), 6.623(3) of [S] and 10.11(Z) of 

[101. 
Numerical data for the case Ir. = 11 = 1 are given in Table 1. Rows S and 6 apply 

to the case where a heat source acts at the point z = 0, v = ‘1 = 1 of the half-plane; 
rows 7 and 8 apply to the case where a thermoelastic deformation center is situated at 

this point. In the case of a heat source the values of u and T given in the Table must 
be multiplied by LV&‘~a&z/.ZOF(O) and Wo&,aJZO, respectively ; the value in the case 

of a thermoelastic deformation center must be multiplied by PEza,h/al; (0) and 
%‘2al/a2. Computation of T required five approximations; computation of u required 
two. The number of approximations required was determined by the criterion of Sect. 1. 

The number of approximations must be increased with increasing h . For example, for 

h = 5 computation of t requires eight approximations and computation of o two appro- 
ximations. The number of approximations also depends (but not quite so strongly) on 9 . 

4, Knowing 7 (5) and the equilibrium conditions, we cali obtain an expression for the 

normal stresses acting in the rod. Some authors [3] prefer to begin with the determina- 
tion of the function cp (5) which represents the reduction of the axial force in the rod. 

With this approach it is convenient to find the function directly from the equation 
I 

where 9 (5) has the same meaning as above. In wing theory the function cp (5) represents 

the circulation of the air flow around the wing and is usually denoted by r (z) ; the func- 
tion 9 (5) describes the wing contour. We know that the function cp (5) must satisfy the 
conditions 9, (-1) = cp (1) = 0 ; for this reason we seek it in the form 

‘p (4 = ‘r/l - za 2 Yd, (4, ‘p’ (4 = 1/f&i m=O 2 (Jfi + I) YJm+1W 
m=o 
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As in the case of Eq. (1.3). we arrive at the infinite system 

co 

urn (5) uk (z) h (m, k = 0.1,. . .) 

(4.1) 

and the coefficients bkare given by formula (1.9). 

Let 9 (5) = 1. In this case the coefficients CmlR can be determined from formula 

(1.15). It is convenient to break down the problem into even and odd parts as above. 

In the even case we have m 

‘p+ (5) = y3-2 2 YIrnU,, (z) 
m=O 

and system (4.1) becomes 

-$-Y,k (2k $ 1) + $ YZimC2m,2k = b2k (k=O,l,...) (4.3) 

m-0 

The coefficients c s,,,, so are given by the expression (*) 

c 
4(2k+2)(2m+i) 

2m,2k = - 
I(2m + II2 -Irk”] ((2m + 1)2- (2k + 2)2J 

We arrive at similar results in the case of an odd function r.p 
m 

(m, k-0,1,. . .) 

(p’- (5) = v- 2 Y2mc1~2m+1(4 

i- -b Zmt1'2m+1,2kt1 - zktl (k = 0.1, . . .) (4.4) 
m=n 

c am tl, 2k+l = - 
1G(m+i)(k+l) 

((2mf 2)2- (2k +I)?] [(?.m+2)2- (Zc+3)2] (m, k=O, i,. . .) 

The results of Sect. 1 remain valid for systems (4.3) and (4.4), since the latter are 

reducible to the systems investigated there. 

We can verify this for system (4.3) by inducing into it the new unknowns Xak+*= 
= (2k + 1)Y,,, whereu~n it becomes the system for the case Z (z) = r- (x). The 
same can be accomplished for system (4.4) by substituting in the new unknowns accord- 

ing to the formula Xsh+s = (21C -#- 2)Ys~,+r and replacing the subscript m by m - 1. 
The resulting system coincides with (1.11). 

In conclusion we consider certain cases where the rod cross section varies along its 
length. Let the cross section vary linearly, i.e. let Cp (I) = 1 - ax (a < i). Replacing 

the I$ (r~l-~ in (1.8) by its expansion in Chebyshev polynomials of the second kind (see 

[12], p, 31) and integrating term by term, we arrive at the following expression for the 
coefficients 0,-r, 8 (m, k = 0, i,... ): 

*) After submitting the present paper for publicati~ we ieamed that a similar formula 
had been derived by V. V. Golubev (Trudy TsAGI F108, 1931) by a more roundabout 
method involving the use of trigonometric series. 
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The series in (4.5) converges rapidly, since it is always the case that P k% i. 
As our second example we consider a rod whose cross section varies according to an 

elliptic law, i.e. the case * (I) = vi - z2, Formulas (1. ?)-(I. 9) now give us 

In particular, if g (2) = Ml/i-- (M = const) and XO = 0, we obtain the exact 
solution 

X&f x 
r-(z)=--_ _ 

hi-i I --2* 

Similar o~rations in the case of system (4.4) yield 

c C 
37 

m,k = k,k = 2 9 Y,=r: 
Zhb, 

J-C (h + k + I) 
(m&c-OJ,.,.) 

If g (2) = M VI-_ (M = const) we have 

Y*= 
3.M 

A+f ) cp+ (4 

The latter formula is familiar to us from wing theory, 

In general the function [* (s)]‘~ must be interpolated by means of Chebys~ev poly- 

nomials of the second kind, N 

-+ r] e,a;, (2) 
n=o 

In this case formula (4.2) yields the following expression for the coefficients Cm,%: 

c =-4(m+1) 5 a,(n+k+d)cos2[(~+n+k)n/21 
mtk n10 IbfV-_(n - k)P] [(m + 1)” - (n -j- k + 2)*1 (“~*=oJ~***~ 

The thoeory and applications of interpolation by orthogonal. poIynomials are presented 

in D3f. 
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A method for investigating the perturbations of the external field due to a system of local 

inhomogeneities (defects) ln an elastic medium is proposed. The method is based on a 
certain special representation of Green’s tensor for a medium with defects in terms of 

the interaction energy operator which is convenient for describing the asymptotic beha- 
vior of perturbed fields. If the defects are small compared with the distances between 

them this representation makes it possible to construct effective solutions and to find 

expressions for the energy and for the interaction forces between the defects. 

Section 1 introduces the interaction energy operator and deals with the construction 
of the asymptotic representation of Green’s tensor for a homogeneous medium containing 
a single defect. The procedure for calculating the coefficients of the expansion is pre- 
sented in Sect, 2 by way of an example (an ellipsoidal inhomogenei~). Section 3 con- 

cerns the general case of interaction of a defect system. Section 4 contains sample 
calculations for two ellipsoidal lnhomogeneities. An explicit expression for the asymp- 
totic behavior of the interaction energy is derived and special cases considered. 

1. We begin with the general scheme. Let &, be a linear operator associated with a 
known Green’s function G, satisfying certain boundary conditions, namely L,G, = I, 
where 1 is an identity operator. If ~5, is a perturbation of the operator L, such that there 

exists a Green’s function G of the operator L = L, f L,, we can show that G is given 
by the representation G = G, - G,PG, W) 
where the operator P is defined by the expression 

P = L, (L, + L~G~L~)-lL~ 0.2) 
In fact, substituting P into (1.1) and applying L from the left side, we obtain 


